Triangle Rejection
Dr. Dan Micsa, dmicsa@hotmail.com, 1999
Requirement

The aim of this algorithm is to reduce the number of triangles that are generated by offset algorithm in surface machining.

Design

The rejection will be designed as a general-purpose algorithm that can be used by any cycle and has as only one aim - to delete from input range all triangles that are completely covered by other triangles.

This technique looks like will reduce the number of processed triangles with 40..80% and the estimated time, for different cycles, will be reduced at 30..60% from initial time.

The techniques will be at least “a two stage” techniques called in this paper RENDER and QUERY and will use a 2D uniform grid (UG2) that will store a real value (float) that represent the maximum Z height of rendered triangles (will act like a Z buffer).

Because quantity of triangles in input range can be significant and the algorithm is at least a two-stage algorithm a copy to a temporal local container can be expensive! This is the main reason the requirements for analysed range’s iterator is slightly increased to a model of constant forward iterator instead an input iterator (all STL containers are compliant with this requirement including s-lists).

Because the algorithm is designed in a generic manner a remove in the middle (required for an in place version) cannot be assumed to be constant time for any kind of container. A future “in place” specialised version for containers that implement remove in middle in constant time can be easy provided if memory issues becomes important!

Problem was issued by Pencil Machining cycle because its expected running time is strong influenced by quantity of facets.

The proposed version that doesn’t alter input data can look like:

template<class ForwardIterator, class OutputIterator>

void Clean(

ForwardIterator fiF, ForwardIterator fiL, //@pm IN: range of triangles are constant visited!

OutputIterator oiOut, //@pm OUT: output iterator

long nBuckets = 100000, //@pm IN: number of buckets

Point ptMin = Point(FReal::AUTOMATIC),

Point ptMax = Point(FReal::AUTOMATIC)

) throw();

Behaviour

Two auxiliary fast linear time loops may be run. They are toggled if ptMin and/or ptMax are set (or let) on their default value FReal::AUTOMATIC. These two stages will loop in a linear manner and will collect extents (along axis bounding box AABB) information. The AABB (particularly its X and Y extends) are used to initialise the UG2 component, and ZMin will be used to initialise Z buffer to a small value.

The core algorithm will loop at least twice over input range and:

In first stage will RENDER all triangles in UG2 keeping inside UG2 maximum Z.

In second stage will QUERY UG2 with a slightly bigger offset triangle if the triangle is covered or not by values stored in Z buffer. If in QUERY stage a triangle is completely covered by values in Z buffer the triangle will be disabled as an output candidate.

Expected running time will be linear because the algorithm is composed from a small number of linear loops 2..4. Its main running time, accuracy and memory requirements are strong influenced by number of buckets in UG2! This is so an important issue that enforces number of buckets to be the first manipulator in function interface. Mainly a small number of buckets (10,000 – 500,000) will induce an inaccurate but fast behaviour, a big number of buckets (500,001 - 5,000,000) will enable a better accuracy and will slow down the rejection process. The number of rejected triangles and running time expectation can be extrapolated following figures shown in.

2.2.1
Source Code Files

EdgeGeom\FTriangles.*

2.2.2
Timescales

5 Days implementation;

3 Days testing;

1 Day benchmark;

2.2.3
Testing Requirements

Tests will check accuracy of rejection process. Other test will try to find a possible heuristics that will set automatic the number of buckets used in rejection process.

For ashtray part copied 5 times with a displacement = Point(0.3, 0.3, 10.3) next results was achieved using different number of buckets.

	Number of input traingle: 27610; Smooth render

	Number of buckets
	1000
	10000
	100000
	1000000

	Out
	15800
	7544
	5889
	5819

	Dropped [%]
	42.7
	72.7
	78.7
	78.9

	Time [sec]
	3.7
	3.7
	7.2
	33.7

	
	
	
	
	

	Number of input traingle: 27610; Fast render

	Number of buckets
	1000
	10000
	100000
	1000000

	Out
	15381
	7571
	6153
	5949

	Dropped [%]
	44.3
	72.6
	77.7
	78.5

	Time [sec]
	1.6
	2.25
	5.4
	33

For a more realistic analysis previous example was translated 10 times with Point(10.0, 10.0, 3.0) each time next results was achieved using different number of buckets.

	Number of input traingle: 276100; Smooth render
	
	
	
	

	Number of buckets
	1000
	10000
	100000
	1000000

	Out
	171241
	27257
	17585
	16819

	Dropped [%]
	38
	90.1
	93.6
	93.9

	Time [sec]
	22
	37
	57
	193

	
	
	
	
	

	Number of input traingle: 276100; Fast render
	

	Number of buckets
	1000
	10000
	100000
	1000000

	Out
	101817
	27220
	17578
	15235

	Dropped [%]
	63.1
	90.1
	93.6
	94.5

	Time [sec]
	18
	28
	165
	

A screen capture that show the ashtray duplicated 50 times with 100k buckets can be shown next. The algorithm drops out more than 93% of facets in 38 seconds that is quite a success.

[image: image1.png]z

Future Developments

The rejection process can be accelerated using hardware rendering (OpenGL) this has ability to render more than 1,000,000 triangles (in 1,000,000 buckets) / second. The presented software solution will be at least 50 times slower.

Risk Assessment

The algorithm can fail in some cases one of this can be shown in next figure:

[image: image2.png]

This can happen when sharp gaps are rendered high and small triangles are under. It looks quite unlikely but still can happen!

Safety threshold is 1.0-2.0 * GridSize().

� �

Ashtray after rejection process. Vectorial view and status of UG2 after rejection process.

�

[image: image3.png]Up triangles

A Up covered area

Area “artificial”
covered by triangle’s
threshold

Triangles rejected correct

i Triangle keep correct
False rejected triangles
\ Safety threshold

Covered triangles(QUERY stage)

