
Design for Polygonal Irregular Network – PIN

Dr. Dan Micsa, dmicsa@hotmail.com, 1998
Requirements for Polygonal Model

1. Support for any polygonal server (e.g. STL, a solid modeller or shell surface geometry, OLE4DM) in a fast pseudo-linear time manner.

2. There should be no restriction on the size of the model.

3. Should solve automatic errors inside imported polygons, stitching small gaps and creating side and bottom walls for big gaps. Must to solve normal direction, should transform a solid in machineable along a given direction, automatic decompose in a set of models when a composite model is created to allow a better memory management.

4. Should work with any tool geometry.

5. The footprint inside memory will be as small as possible when the data structure is in idle state allowing storage of any number of PINs at same time.

6. Must become persistent.

7. All the model must be easy adaptable.

8. Algorithms that require communication must to be designed in a way that allow any kind of standard containers compliant objects to be used as provider or receiver of information.

9. All algorithms that require outside adaptation must be designed in a manner that allow easy plug ins (adaptors) to be designed without explicit knowledge of underlined algorithm.

Introduction

In general a polygonal (solid) model to become ready to use in manufacturing science require to be:

· Imported from a polygonal server (STL – triangular format, a solid modeller, a shell based modeller);

· Converted in a suitable format that allows easy traversal;

· Stitch small gaps and solidify open shells;

· Fix normal problems;

· Remove sharp nodes and edges to achieve a first derivative continue solid – this will allow automatic creation of rollovers in sharp places;
· Query (analyse) solid for different tool-paths.
Polygonal Irregular Network (PIN) is structure that has a pregnant irregular behaviour maybe this is the reason why I insist to have word irregular in his name and I will explain why.

A sharp PIN is a minimal data structure with granularity big enough to store only one analytical aspect under a tolerance: its own geometry.

A smooth PIN will be a PIN that is C1 continuos under a tolerance) becomes suitable for other range of analysis like offset, and critical angle detection.

Fortunately any sharp PIN can be convert in a smooth PIN in a near linear time!

Because it is its nature to be irregular other transformations that involve other sort of analysis that are not related with its intrinsic Euclidean representation e.g. rest milling, collapse in > 2D, thermal, vibration flowing, are not suitable for this data structure for only one reason:

Granularity of a PIN is not high enough in other analytical dimensions! This is a very important property and draw back of PIN representation.

Along this spec I will provide only one transformations that convert a sharp PIN to a first derivative smooth PIN as a possible transformation over this data structure to achieve a proper granularity for offset like transformations, common used in manufacturing science.

Other preparations for other sort of analysis require other sort of transformations.

Designing a “suitable transformations” over a PIN structure that will achieve a proper granularity for a particular type of analysis isn’t a trivial task and is always dependent on transformation that will be performed!

Probable this is the main reason why uniform grids (UG) are used in all heavy-duty analysis in science. UG-s solves very elegant the problems related with space granularity and offer constant time access to a particular place in any analysis space, but they have an important drawback: require polynomial storage!

Terminology

Along this documents will be used some concepts used in mathematics, OOP and generic programming this can be summarised as follow:

· | = OR

· & = AND

· IsA (IsKindOf) = is specialisation via public inheritance;

· WasA = is a specialisation via protected or private inheritance;

· HasA = embed an instance of a type;

· HoldsA = embed a pointer or reference to a type;

· DependsOn = (IsA | WasA | HasA) – this is compile or link time dependencies;

· IsModelOf = this require from a given type to implement a desired behaviour. This is not necessary to be implemented in an OOP way, via virtual methods. In general desired behaviour is modelled by adaptable components. In OOP this powerful generic mechanism is restrained at only virtual member functions inside public and protected interfaces.

Use cases

Because complexity of this class is relatively high the design spec was split in two: first one treat auxiliary algorithms, second one will treat algorithms direct related with different methods of query.

In this first part of PIN’s design specification will be described auxiliary algorithms. These algorithms are related with import, export, persistency (save, load), cache management, filtering, healing, topological transformations.

Usage of this algorithms can be summarise in next use case diagram:

[image: image3.png]

Data Structure

The polygonal model is in essence a network of connected polygons and will be stored in a Polygonal Irregular Network (PIN) class. Analysing desired requirements the chosen solution will be a tailored version of the edge – twin-edge technology that achieve:

· constant time traversal starting from any node, edge or polygon,

· easy error detection (detection of orphan edges, circulation problems),

· fast load and save algorithms if the containers used to store PIN will be are AModelOf random access container and handles used to cross reference data will be AModelOf an index in a random access container.

The half-edges of a polygon are always ordered anticlockwise as viewed down polygon’s normal vector, assuming the normal points from ‘solid’ to ‘air’.

The models will forms one or more closed shells that can be automatic decomposed in a one shell per PIN structure for better memory management.

Handles (cross-linked information) will be prefixed with:

xe = for an handle to an edge; Size = 4

xn = for an handle to a node; Size = 4

xp = for an handle to a polygon; Size = 4

xt = for an handle to a point; Size = 4

pt = point; Size = 24 (12)

r = double; Size = 8 (4)

For a generic enough implementation of PIN inside a CAM product we can have three main containers that contain next elements:

Edge {xeTwinEdgeIx, xeNextEdgeIx, xnNextNodeIx, xpMainPolyIx, Flag<8>} ElemSize: 4 + 4 + 4 + 4 +1 = 17

Node {xeAnEdgeIx, ptNPart, ptNNormal, ptNAnalysis, rSlice, Flag<8>} ElemSize: 4 + 24 + 24 + 24 + 8 + 1 = 85 (45)

Polygon {xeAnEdgeIx, ptPNormal, Flag<8>} ElemSize: 4 + 24 + 1 = 29 (17)

When we try to optimise memory usage, analysing what fields from each element is really required in some representative algorithms we will arrive to the conclusion: average memory requirements for an algorithm is 50% from what we store to represent a PIN in memory.

When will try to write memory management we will realise:

Elements stored in each container are to rich in information and generate a to rough granularity in containers number (are only 3) stopping us to implement a fine-tuning of memory management.

Some immediate observations over redundant data in our 3 containers are the flags, these are quite small structures but can go outside and algorithms that require flagging (slicing, smoothing, etc) can create required flag containers, local, to solve their specific tasks. Another redundant data will be ptNPart that is the part physical co-ordinate this is required to store a solid but not a smooth solid where all new added nodes have the same physical co-ordinate. Going ahead with this logic will conclude a smaller granularity in container’s element will arrive in a better cache management.

Memory requirement will be presented in a table couple of pages latter highlighting what fields will be affected in mutable or constant manner for some typical algorithms.
[image: image4.png]Jser

=< Notation =>

<< Notation >»

<< Notation >»

Peritent Smacth PIN ﬁ

A relatively decent organisation that allows a good memory management following previous logic guides us to the conclusion: Main data structure can be split in 8 cached containers allowing fine-tuning of caching mechanisms. These containers contain next information:

Topology:

Edge {xeTwinEdgeIx, xeNextEdgeIx, xnNextNodeIx, xpMainPolyIx}; ElemSize: 4 + 4 + 4 + 4 = 16

Node {xeAnEdgeIx, xtPartIx} ElemSize: 4 + 4 = 8

Polygon {xeAnEdgeIx} ElemSize: 4 = 4

Geometry:

Point {x, y, z}; ElemSize: 8 + 8 + 8 = 24 (can be - 12)

Slicing:

Slicing {double} ElemSize: 8 (can be - 4)

And the containers are:

Topology:

aux::CachedSequence<STD::vector<Edge>> Edges

aux::CachedSequence<STD::vector< Node>> Nodes

aux::CachedSequence<STD::vector< Polygon>> Polygons

Geometry:

aux::CachedSequence<STD::vector<Point>> NPart, NNormal, NAnalysis, PNormal.

Slicing:

aux::CachedSequence<STD::vector<double>> rsNSlices.

For a typical medium size part this are some statistics related with number of elements, kilobytes, and percentages from total memory occupied by each container for a real type = double for points and slice field.

Sharp PIN

Smooth PIN

	 Ashtray
	ElemNo
	Kilo
	%
	ElemNo
	Kilo
	%

	 Polys
	22088
	21.57
	2.86
	169680
	165.7
	1.36

	 Edges
	265056
	258.84
	34.28
	4072128
	3976.69
	32.64

	 Nodes
	22104
	21.59
	2.86
	678688
	662.78
	5.44

	 NParts
	88416
	86.34
	11.43
	88416
	86.34
	0.71

	 NNormal
	88416
	86.34
	11.43
	2714752
	2651.13
	21.76

	 NAnalysis
	88416
	86.34
	11.43
	2714752
	2651.13
	21.76

	 PNormal
	176704
	172.56
	22.85
	1357440
	1325.63
	10.88

	 NSlices
	22104
	21.59
	2.86
	678688
	662.78
	5.44

	 Size:
	
	755.17
	
	
	12182.18
	

Size can vary but percentage tab will be the same for all parts (nice property). As a conclusion edges are first according with memory usage always 1/3 from total memory required by PIN.

Memory Management

Memory management is encapsulated inside each of main 8 containers and is done automatic when a PIN objected is accessed. In present release for efficiency implementation each algorithm must to inform which container will be constant and which mutable accessed. In a future implementation can be implemented an error proof version that will wake up, send to sleep and invalidate containers when this are accessed mutable or constant this will be slightly slower (must to be overwrite all constant and mutable access methods).

[image: image1]
After any kind of access memory is freed automatic. In case of a nested call a reference counter ruled the persistency of a container achieving more than 98% percent speed compared with a non-cache implementation! The benefits of this design are 0 Kilo when is in idle state allowing storage of any number of solids in memory at a given time.

All the eight main containers are derived from CachedSequence a wrapper over a sequence that implements encapsulated reference count caching.

Next class hierarchy rules memory management:

The only public way to use a cached container is to instantiate an AutoWakeAndSleep object before any call. AutoWakeAndSleep will solve automatic problems related with nested calls via a reference counter implemented in ACachedContainer. This method will open a container for constant access (read access) when a container is required to be mutable visited (write access) a supplementary InvalidateCache() call must be performed.

In general, when a particular algorithm is performed not all containers are required inside memory.

In next table I will try to figure out containers size variation and the way in which a container is used (in a constant or mutable manner) for some of the basic algorithms:

[image: image2]
Algorithms

Importing and Joining Polygons

The PIN will be built by importing polygons. They may be supplied in random order, and no topological information will be required. This will allow any kind of polygonal server to provide information in a natural manner without knowledge about inside data organisation. A simple interface will make simpler changing of underlined data structure without user care.

The only public way to construct a PIN will be a method ModelOf non-mutating algorithms that looks like:

template<class Input iterator>

InputIterator ImportPolygons(InputIterator First, InputIterator Last) throw();

This will allow any imaginable constructs that are a model of ConstForwardContainer<ConstForwardContainer<Point>> to be a valid source of polygons for PIN.

Note: Special fashioned particularisation like ConstForwardContainer<Triangle> are perfect valid with only one condition: constant forward container behaviour must be implemented in underlined Triangle and Point classes because is expected by generic algorithms, been the standard method of visiting a container!

In first release of PIN it will be assumed each polygon will be imported ordered according to the anticlockwise convention. In a future release the importing algorithm will be able to change circulation and after solidify stage to correct normal direction according with the volume sign.

ClearPIN

ImportAndJoinAllIncomingShells

Stitch //maybe stitch will require node and polygons normal for a wider range of techniques

Solidify

SetPolygonsNormal

SetNodeNormal

Heal

//In this moment the solid is considered a valid PIN and will be called “sharp PIN”!

Exporting data from a PIN

In this section will be presented only faceted output. The proposed methods for output is:

template<class OutputIterator>

OutputIterator ExportPolygons(OutputIterator) throw();

Other polygonal output will not be provided PolygonToTriangle() generic algorithm is assumed to be write as a standalone generic algorithm.

I will present a short example that is primary aimed to exemplify how import and export is done. The second target is to present the proper granularity for a generic programming function design or “how much functionality must to be encapsulated in an algorithm to avoid code duplication”.

A small example that create a PIN from and back to an STL stream can look like:

std::list<std::deque<Point>> ptssPolygons, ptssTriangles;

double rTolerance(0.01);

//create PIN and initialise its cache in “CacheDirName”

PIN pin(“CacheDirName”);
//add all the facets found in a STL stream in an additive way
if(!IOSTL::In(std::back_inserter(ptssPolygons), “c:\\Test.STL”))

return;

//Import all founded polygons
pin.ImportPolygons(ptssPolygons.begin(), ptssPolygons.end(), rTolerance);

//..

//Other PIN processing here;

//..

//clear the container

ptssPolygons.clear();

//Export polygons in an additive way
pin.ExportPolygons(std::back_inserter(ptssPolygons));

//Convert to traingles
PolygonToTriangle(ptssPolygons.begin(), ptssPolygons.end(), std::back_inserter(ptssTriangles));

//Export the polygon stream (now are triangles)

IOSTL::Out(ptssTriangles.begin(), ptssTriangles.end(), “c:\\Test1.STL”);

Stitching

After the basic polygon import process has been applied some small gaps in the model may remain, e.g. along the boundary between two adjacent surfaces. ‘Stitching’ the surrounding polygons together will close these small gaps.

Stitching is a crucial algorithm, the size of data inside a PIN is direct related with stitching algorithm and can be easy 5-15 bigger if stitching and healing is not applied!

Stitching is in general a fuzzy algorithm requiring human intervention! A pseudo-automatic version can be imagined that uses only part tolerance. This will be implemented using a uniform grid component to render orphan edges and nodes and will take each orphan node and will try to found the nearest orphan edge. If the distance between this two is smaller than tolerance will stitch the node to the edge and will perform all the topologic correction after this will try to stitch a neighbour orphan node and to remove the orphan edge that join together the two orphan nodes.

[image: image5.png]nnnnnnnnnnnn

Solidify

For most operations (e.g. slicing) to work efficiently on the model it should form a closed shell.

A model build from shells surfaces is not in general complete. A simple method of closing the model is to create vertical walls along the edges of any polygons that have no neighbours and to close down with a horizontal plane.

Set Polygon Normal

Set the polygons normal using three non-collinear points.

Set Node Normal

Set the node normal using neighbourhood triangles.
Healing Anomalies

Anomalies may occur in the model, e.g. along the boundaries between two surfaces. The stitching process will have closed any gaps, but wrinkles in the model may remain. ‘Healing’ is the removal of such artefacts. It is not a crucial step, but will result in better quality tool-paths and smaller footprint in memory required.

Smoothing sharp features

If we want to achieve an “auto-rollover” effect all sharp edges and nodes must be removed to achieve a pseudo-continuity (a continuity under a tolerance) of first derivative, this is the “CAM transformation” for a PIN structure. This transformation will be called Smooth() and is the transformation that will convert a sharp PIN to a smooth PIN (first derivative continue under a tolerance). In this first design, these are designed in a non-adaptable manner treating all the polar space in a homogenous manner. To achieve generality in offset process any kind of offset geometry (tool) that is bijective in polar co-ordinates (for any latitude angle = [-90o – 90o] and any longitude angle = [0o – 360o] exist only one point on offset geometry) is considered a valid offset geometry definition.

Q. Why a tool (aModelOf offset geometry) must be bijective in polar co-ordinates ?

A. Because a unique back function must be generated that map a point and a normal to “tool centre”.

That means its interface can look like:

void Smooth() throw();

An adaptable version of smooth that preserves previous interface can be imagined:

void Smooth(const PIN_::Smooth::A& = PIN_::Smooth::HomogenousSpace(Tolerance())) throw();

Where PIN_::Smooth::A adaptor will be designed to decide when two normal are to far and the entity that query the adaptor is sharp. This family of adaptors can rule smoothing process in an adaptive manner decreasing, for example, memory requirements for particular case of milling in 3D. A proposed header can be:

PIN_::Smooth::A

{

bool operator()(const Point& ptNormal1, const Point& ptNormal2) const throw() = 0;

}

Where the heuristics encapsulated inside adaptor will take the decision if the two normals characterise a sharp or shallow edge. The encapsulated heuristics is the object of this adaptor.

For different type of “CAM transformation” particularisation various adaptors can be imagined that will slightly improve expected running time and will decrease memory requirement. As an example a valid techniques that can be applied in milling in 3D is to don’t remove sharp edges that have at least one neighbour polygon with normal pointing against “Z” direction. These techniques will decrease memory requirement with an expected 10 – 30%.

Removing sharp features can look in pseudo-cod like:

RemoveAllNodesThatHaveAtLeast2SharpEdges();

while(AreSharpEdges)

RemoveAllSharpEdges()

Remove sharp nodes

All nodes that have more than one incoming edge sharp must be removed to achieve nice smooth rollovers. A picture that explain how the algorithm work can be shown next:

[image: image6.png]Analysis point— §{ X=5.0,Y =100, Z=0.0, SliceValue = 0.0;

X=40.Y=75.Z2=00. SliceValue = 0 25; Calculated value
Part point

X=80.Y=60.Z2=00. SliceValue = 0 5: Calculated value

X=20.Y=25.Z=00. SliceValue = 0.75; Calculated value

X=1.0,Y=0.0,Z=0.0, SliceValue =1.0;

How the algorithm will work? First we must to consider container organisation - aModelOf random access container (RAC) - that means removing and insertion in middle is an expensive process. All removing process works only with topological information to achieve robustness. That means physical geometric information is the same in all inserted nodes.

[image: image7.png]

To avoid deletion in the middle of a container first inserted node that occur in removing a node process will receive the handle (index) of removed one, all other nodes will be appended at the end of nodes container. This process can be observed in next figures where we have in pictures A p polygons, n nodes and e edges are current in each containers:

Remove sharp edges

Sharp edges must be removed to achieve first derivative continuity. A possible relation that rules edge removal can be:

Point ptThreshold(PNormal(EMainPoly(thisEdge)) – PNormal(EMainPoly(ETwinEdge(thisEdge))));

if abs(ptThreshold > ptMaxAdmissibleThreshold)

RemoveEdge(thisEdge);

This is very fast and use Manhattan distances that doesn’t require any expensive operations performed on real types to decide if an edge must or not to be removed. ptMaxAdmissibleThreshold is the key value that force “auto-rollover” effect and is the main factor that dictate memory requirements and speed of all PIN processing!

Some pictures related with sharp edge removal can be shown next:

[image: image8.png]i
Y

How the algorithm will work? First we must to consider container organisation - aModelOf random access container (RAC) - that means removing and insertion in middle is an expensive process. . All removing process works only with topological information to achieve robustness. That means physical geometric information is the same in all inserted nodes.

[image: image9.png]Node
xehnEdge

To avoid deletion in the middle of a container first inserted node that occur in removing an edge process will receive the handle (index) of removed node, all other nodes will be appended at the end of nodes container. This process can be observed in next figures where we have in pictures A p polygons, n nodes and e edges are current in each containers:

Save

Constant containers: All

Mutated containers: None

Becomes persistant. Mainly persistency is a trivial problem when all containers are random access containers (RAC) and all handles are indexes in RAC.

ostream& operator<<(ostream&, const PIN&);

Load

Constant containers: All

Mutated containers: All

Retrieve from a persistent storage.

const istream& operator>>(const istream&, PIN&);

Introduction

Some of the algorithms presented in this section will be implemented in an adaptable manner. This solution was chosen because offer great flexibility without exposing low level organisation and without enforcing inside dispatching or outside inheritance.

Examples of proposed adaptable algorithms:

InitAnalysisField() – How a solid is treat by geometrical algorithms ?

InitSliceField() – How will treat generic slicing algorithm this solid?

SliceAll() – what is the rule to vary the step when I will multiple slice this solid?

Adaptors are small classes that are compliant with Adaptor pattern. That means they have only a main virtual action (if is a runtime adaptor). This in general is called DoIt(), Process() or Transform() in OOP languages in general and operator()() in C++ because a void name express better than anything desired behaviour for a small class.

Note: In this paper will be used word “virtual” to express a ModelOf relation that in a compile time implementation (using templates) don’t require a physical “slow” VMT!

A query can arrive:

Q. Why al this pain with a lot of adaptors for a simple translation or scale for example?

A. At least for this reasons:

1. Their development is separate independent hierarchy of classes,

2. Avoid visiting and dispatching all affected adapted classes in a polynomial manner when a new adaptor is created,

3. Enable orthogonal functionality with linear programming!

4. Enable in an elegant manner implementation automatic update of invalid entities (require cloning),

5. Implement a way to solve in a uniform manner a wide range of problems.
The geometrical information logical stored in a node of a PIN (isn’t physical organised in this manner due the to rough granularity involved in caching mechanism but the accessors wrapper simulate this logical behaviour) is:

ptNode = physical geometrical node position (constant);

ptNormal = normal in physical node (constant);

ptAnalysis = a point that is used by all transformations (mutable);

rSlice = a real value used by slicing mechanism (mutable);

The trick to achieve generality and to let a user (developer) to enrich PIN’s behaviour is to don’t make any kind of assumption about how mutable fields (ptAnalysis, rSlice) will be filled.

ptNode and ptNormal are constant information in geometrical processing and their contained information is used only as constants in filling of ptAnalysis and rSlice field.

For manufacturing science looks like is enough:

ptAnalysis = AnalysisAdaptor(ptNode, ptNormal);

And for an entirely lot of slicing algorithms looks like:

rSlice = SliceAdaptor(ptAnalysis, ptNormal);

This is a sufficient model for a lot of analysis that fit with PIN’s granularity slice along any kind of directions(particular case: mill 3 axis, Z level) and critical angle detection (particular case: combo cycle).

Some argues can come due the simplicity of SliceAdaptor that don’t provide enough neighbourhood information for collapsing like slice transformations (PIN isn’t suitable for this sort of processing because his granularity is tailored to geometrical processing!). In this cases a more generic adaptor can be imagined:

rSlice = SliceAdaptor(NodeHandle);

That will expose all node and neighbourhood information.

Algorithms

Filling Analysis Field

All high level operations (conversion, queries) over a PIN work with “Analysis Point”. The way in which the information is filled in analysis field is the scope of this adaptable algorithm.

Manufacturing science inspires the Adaptor’s interface used by this algorithm that looks like:

//This is the model of Offset adaptor that ruled the way how an offset is done

namespace AnalysisFilling

{

class A

{

public:

virtual void operator()(Point &ptOffset, const Point &ptPart, const Point &ptNormal) const throw() = 0;

};//A

};//Tool
A short example:

Analysis filing adaptor will be aModelOf AnalysisFilling::A abstract interface that will implement desired behaviour. This class can be plugged as a functor at compile time or as normal parameter at run time. Isn’t quite clear what design will be adopt, certain is the body of the two algorithm adapter will be the same, only linking will be switched from compile to run time. I will exemplify two concrete interfaces for analysis field adaptors: a normal “ISO revolution tool” and the “Part” that will allow all algorithms to work on part representation:

namespace AnalysisFilling

{

class RevolutionTool: public A

{

public:

RevolutionTool(double rDiameter, double rCornerRadius, EAxis::iterator ax_itRevolution = EAxis::Z) throw();

virtual void operator()(Point &ptOffset, const Point &ptPoint, const Point &ptNormal) const throw();

};//Revolution

class Part: public A

{

public:

virtual void operator()(Point &ptOffset, const Point &ptPoint, const Point &ptNormal) const throw();

};//Part

};// AnalysisFilling

Using this design all the transformations over analysis field for any kind of AnalysisFilling::A compliant adaptors can be wrote:

//In a run time manner:

virtual void PIN::FillAnalyseField(const PIN_::AnalysisFilling::A& af_a) throw()

{

for(NodeIx xn = 0; xn != m_Nodes.size(); ++xn)

af_a(NAnalysis(xn), NPart(xn), NNormal(xn));

}

//In a compile time manner:

template<class AnalysisFilling >

virtual void PIN::FillAnalyseField(const PIN_::AnalysisFilling::A& af_a) throw()

{

for(NodeIx xn = 0; xn != m_Nodes.size(); ++xn)

af_a(NAnalysis(xn), NPart(xn), NNormal(xn));

}

Expected running time - linear, storage - constant.

Filling Slice Field

This forms the basis for all slicing cycles (e.g. waterline cycle, mill 3 axis, lollipop cycles, 4-5 axis etc, ComboCycles).

To achieve generality the algorithm will not slice physical X, Y, Z or another custom values, will slice a generic “Slice value” that must be initialised first and can be initialised with anything! The function is:

virtual void FillSliceField(const PIN_::SliceFilling::A&) throw();

And the adaptor that will ruled slice filling could look like:

//This is the model of Slice filling adaptor that ruled the way how slice field is populate

namespace SliceFilling

{

class A

{

public:

virtual double operator()(const Point &ptAnalysis, const Point &ptNormal) const throw() = 0;

};//A

};//ASliceFilling
This is only a proposed interface for “Slicing Filling Adaptor” The most common transformations are Slice = X, Slice = Y, Slice = Z that will arrive with our waterline cycle or mill 3 axis along X or Y. Other ways of filling Slice field will generate another pattern in generated curves.

A popular example is the along axis “Filling Slice Field adaptor”, that can look like:

namespace SliceFilling

{

class AnalysisAxis: public A

{

public:

explicit AnalysisAxis(EAxis::iterator ax_itActive) throw();

virtual double operator()(const Point &ptAnalysis, const Point &ptNormal) const throw();

};

};//ASliceFilling

Expected running time - linear, storage - constant.

Slicing the model

Slicing the model is the base of all slicing algorithms other analysis that can be performed if the model granularity is dense enough.

Slice will be provide in two flavours for only one slice with the proposed header:

template<class OutputIterator>

STD::pair<double, double> Slice(OutputIterator, double rSlice) const throw()

and perform all slices in a range with the proposed header:

template<class OutputIterator>

void

SliceAll(

OutputIterator oit,

const PIN_::ChangeStep::A,

double rMin = aux::Auto(double),

double rMax = aux::Auto(double)

) const throw()

Adaptors that process the step inside slicing algorithm in this moment look like:

namespace ChangeStep

{

class A

{

public:

virtual double operator()(const STD::pair<double, double>&) const throw() = 0;

};//A
};//ChangeStep
And a popular example of slicing adaptors for variable and static step can look like:

namespace ChangeStep

{

class Dynamic: public A

{

public:

Dynamic(double rStep, EAxis::iterator ax_itSlicing, double ruThreshold = 0.1) throw();

virtual double operator()(const STD::pair<double, double>&) const throw();

};//Dynamic

class Static: public A

{

public:

explicit Static(double rStep) throw();

virtual double operator()(const STD::pair<double, double>&) const throw();

};//Static

};//ChangeStep

In present other statistics aren’t processed along a curve. Personally I use in past researches a step ruled by a linear blend between geometrical mean and min (or max) of tilt with slightly better response time improve (10-20% lower) without significant increase in cusp high. For this sort of advanced dynamic step control a richer statistic information is required along curves.

A short example that illustrate usage of the last three adaptable algorithms can be:

typedef STD::vector<Point> Points;

typedef STD::vector<Points> Pointss;

EAxis::iterator ax_itMillingAxis(EAxis::Z);

//Prepare Analysis field to be “A REVOLUTION TOOL AROUND Z AXIS”

pin.FillAnalyseField(PIN_::AnalysisFilling::RevolutionTool(40.0, 20.0, ax_itMillingAxis));

//Fill slice field with rsNSlice = ptNAnalysis[EAxis::Z]

pin.FillSliceField(PIN_::SliceFilling::AnalysisAxis(ax_itMillingAxis));

//Perform all slices using constant step = 25.0 and return this in a Container< Container<Point>>

pin.SliceAll(STD::back_inserter(ptss), PIN_::ChangeStep::Static(25.0));

//OR we can use a dynamic step that can vary between [0.1 * 25.0, 25.0] according with tilt of normal

//pin.SliceAll(STD::back_inserter(ptss), PIN_::ChangeStep::Dynamic(25.0, ax_itMillingAxis, 0.1));

And a potential output can look like:

[image: image10.png]IsManagedBy

< Sequence>

<< Reference >>

Sequence

Slicing algorithm uses a slice value that is stored in each node and slices the entire solid analysing only this value. When the data is computed and exported points from analysis field are linear interpolated and exported. This concept can be observed in next pictures:

[image: image11.png]A. Begin Processing

B. Import Stage
‘ -
C. Polygon Normal
\

E. Remove Edges & Nodes

G. Fill Slice Field

ptsNAnalysis ptsNNormal ptsNPart ‘ - - - ptsPNormal

5% . 22 % 1% 5% 32 % 1% 11 %

Percentage means memory required from total amount

D. Node Normal

ptsNAnalysis ‘ ptsNNormal

ptsPNormal

F. Fill Analysis Field

ptsNAnaIy5|s ptsPNormal

Heigh of a box means number of elements

Legend: Closed Size and access
B Open for reading modification for some
B Open for writing acctions inside PIN

Slicing algorithm use Edge – NextEdge and Edge – TwinEdge constant time information to travel from a polygon to other. Usually not all polygons are convex but all polygons’ half edges describe a continuos curve in rSlice coordinate. That means intersection between a slice value and a polygon will happen always in a even number of places.

A simple implementation of slicing algorithm will not be sensitive at this problem anyway generated curves will be closed. Designing a PIN transformation that will convert in a feasible manner all concave polygons in convex one at import time isn’t look like a simple possible transformation. I will try to exemplify this in next pictures where with black is presented a main convex polygon that degenerate in a concave one after transformations.

[image: image12.png]

Looks like this sort of problems can be solved robust if we use the property of PIN to be first derivative continue that means all node normals of a polygon have nearly same orientation. That result on the conclusion: for any kind of first derivative continue offset geometry (not end mills!) can be defined a safe big angle that will force polygon subdivision according with estimated offset behaviour. This can be observed in next pictures:

[image: image13.png]<~ Unorthodox corner
After deletion remain

/[any good corners

N

One problem still can happen when n

Expected running time - linear, storage – linear (masks for edges must to created).

Projection of Curves

Projection forms the basis for projection cycles, and is also used for de-gouging pencil lines.

It is also needed for combination and rest machining.

To project a curve, each straight-line segment is projected in sequence and the results concatenated.

To project a straight line:

· Find all the polygons under the line

· Trace the curve(s) of intersection; store as a tz profile in the vertical plane

· De-gouge the tz profile

· Convert the tz profile to a 3d curve of projection

We can use existing Upper Route code for de-gouging.

Expected running time - linear, storage – linear (masks for polygons must be created).

…

Finding Pencil Lines

Finding the pencil line curves is done in next main stages:

· Find all intersection curves

· Filter out curves with shallow intersection angles

· De-gouge the remaining curves (using projection)

· Join together fascicle of segments can be done using a two step UG component, discreet dilations and contractions, discreet skeleton detection, maybe 2..3 step fractal subdivision and remove collinear points after.

….

Rest Machining

This involves re-machining the areas of a component uncutable by a given tool, using a different, generally smaller, tool. This cycle use analytical model to detect uncut places because discreet solids (PINs) don’t have constant time access and sufficient granularity (in uncut or uncutable space) to perform rest milling. The benefits are using “near projection” to decrease one step errors that can occur near steep walls.

3d Collapse

This involves creating a 3d pattern using analytical model on the surface of the model by collapsing a containment boundary in increments, measured along the surface. The increments could be based on a maximum cusp height. After this a “near projection” will be applied to read correct 3d offset.

Why again analysis models? And the answer is again problems with granularity in 3DCollapse space.

Combination Cycles

Typically this involves creating containment boundaries for other cycles such projection and waterline. Areas whose surface normal vectors are less than a critical angle from the vertical (say 45 degrees) are machined using a shallow cycle; the remaining areas are machined using waterline slicing. Looks like node dispersion and granularity of PINs are proper to critical place detection. Still I incline to use analytical model for this sort of problems because curves come direct de-gouged and a de-gauge algorithm that work in derivative space (critical angle) space will not be a pleasant task.

Anyway using slicing cycle this can be code like:

PIN.InitSliceField(LatitudeOfNormal());

typedef vector<vector<Point>> Pointss;

Pointss pointssInt;

Slice(back_inserter(pointssIn)), rCriticalAngle); //detect critical places

Geometrical Transformations

Geometrical transformations are in general transformations that affect any finite geometrical entities.

The proposed solution is to have a:

class AGeometry

{

virtual void Transform(const ATransformation&) throw() = 0;

}

ATransformation is a model of unary function and will be a base class for all possible transformations (translations, rotations, scales, mirrors, etc) and can have next header:

This is the model of a geometrical transformation:

namespace AGeometry_

{

namespace Transformation

{

//This is the model of a geometrical transformation

class A

{

public:

virtual void operator()(Point&) const throw() = 0; //modify in place for efficiency!

};//A

};//Transformation

};//AGeometry_

And some simple specialised adaptors:

namespace AGeometry_

{

namespace Transformation

{

class Translate: public A

{

public:

explicit Translate(const Point& pt);

virtual void operator()(Point& pt) const throw();

protected:

const Point m_pt;

};//Translate

class Scale: public A

{

public:

explicit Scale(const Point& ptScaleFactor, const Point& ptOrigin = Point(0.0));

virtual void operator()(Point& pt) const throw()

protected:

const Point m_ptScaleFactor;

const Point m_ptOrigin;

};//Scale

};//AGeometry_

�

�

�

�

Figure � STYLEREF 1 \s �0�.� SEQ Figure * ARABIC \s 1 �1� Exemplify slicing algorithm

��

Ball nose tool = 40 mm shallow places

�

Topological information inside a PIN

�

�

�

�

����

Removing a node process: A. n-2 node; B. Order of processing; C. First node index is the same others are appended at end other 8 new edges are created and 1 polygon; D. resulting PIN without “sharp” node.

�

�

Figure � STYLEREF 1 \s �0�.� SEQ Figure * ARABIC \s 1 �2� Smoothing an external edge after “sharp edge detection” A - with red are new created facets, with black are some normals. B – how to concrete remove a sharp edge.

� � � �

Removing an edge process: A. e-7, e-4 edge, 5, n-7 nodes; B. Order of processing. C. First node index in each removed nodes is the same as removed node (5, n-7) others are appended at end other 10 new edges are created and 1 polygon. D. resulting PIN without “sharp” edge.

1

[image: image14.png]

[image: image15.png]1

Order of processing

-5

[image: image16.png]

[image: image17.png]-1

[image: image18.png]

[image: image19.png]facets that contain the sharp edge

edge need only one facets - age

initial facets

new offset contour
new outside edges
old nodes

new nodes

[image: image20.png]

[image: image21.png]

[image: image22.png]

[image: image23.png]

