Along Axis Uniform Grids (AAUG)

Dr. Dan Micsa, dmicsa@hotmail.com,1998
AAUG is a method of optimisation of any kind of interference problem between any kind of geometrical entities. Simplest algorithm that solve these sort of problems as degauging, projection, intersection between geometrical entities had a expected running time comparable with n2 where n is the number of geometrical entities. More sophisticate way of solving can reduce complexity of this type of problems at n (using uniform grids (UG) or hash methods) or n log n using tree like structures or sweep like algorithms.

Using UG or hash methods have in general a better behaviour than tree like structures but require a n2 or n3 data structure that hold neighbourhood information. This disadvantage can make usage of UG impracticable in a lot of algorithms. In general UG had a constant time answer at any sort of simple questions as intersect this line with these triangles, project this point etc.

Sweep like algorithms solve well a lot of problems when we have to perform a set of queries on a container with geometrical entities. As example for this type of problems is scan line this polygons, “intersect this polygons with this polygons”, “from this container with points how many are inside in this container with polygons”. Simple queries as this point is inside this polygons are always solved in amortised n that in general don’t satisfy our needs.

Always I was fascinated by remarkable property of UG to answer at very different range of queries in constant time and I tried to use this amassing property all over the places. Unfortunately storage problem was always a problem and their requirements of n2 (for x, y UG) or n3 (for an x, y, z UG) was always an handicap for an efficient implementation of robust and agile algorithms. I will try to present a method that use UG along different axis and Boolean operations to perform relatively constant time response using n storage. Let’s define first a generalisation of an axis in space:

Axis = i * x + j * y + k * z; i, j, k (R and i, j, k not all = 0 at same time.

It is obvious to observe for:

i = 1.0; j = 1.0; k = 0.0; will have Axis = x;

i = 0.0; j = 0.0; k = 0.0; will have Axis = y;

i = 0.0; j = 1.0; k = 1.0; will have Axis = z;

My algorithm is nothing more special than this: for a given set of entities, perform their projection on an arbitrary set of axis keep their occurrence in a grid with a given step. In each cell of grid keep a sorted (after index in main container) sequence with all present entities that had a projection there. When any query occur make a reunion on each axis of all possible candidates and after this make an intersection between all candidates along each axis and build candidates list.

Details about number of axis and number of buckets for an efficient running time are large dependent on type of problem that must to be solved and obvious will not be a subject of this tiny paper!

As an exemplification of this concepts I will develop a very simple example.

