A use case study for Uniform Grids
Dr. Dan Micsa, dmicsa@hotmail.com, 1998
Abstract

This paper will present a method that will try in some simple steps to extract generality required for a heavy-duty Uniform Grid (UG) algorithm. This methodology will try to be a noninvasive one and will let main managed objects without knowledge about a particular algorithm (UG in this case).

Introduction

A uniform grid is method that subdivide a finite portion of an n dimensional space in smaller places called in this paper buckets. Each bucket had same size along a particularly axis.

I will start presentation in this paper with a minimal set of classes that will be used in all examples. These are:

class AObject;

class AConstantAlgorithm

{

public:

virtual bool operator()(const AObject*) throw() = 0; //true if was applied!

};//AConstantAlgorithm

class AObject

{

public:

virtual unsigned long GetID() const throw() = 0;

virtual void Apply(AConstantAlgorithm& aa) const throw() {aa(this);} //specialised for simple objects !

};//AObject

class AGeometry: public AObject

{};//AGeometry

class Point: public AGeometry

{

public:

enum {ID = 1};

virtual unsigned long GetID() const throw() {return ID;}

};//Point

class Line: public AGeometry

{

public:

enum {ID = 2};

virtual unsigned long GetID() const throw() {return ID;}

};//Line

class Triangle: public AGeometry

{

public:

enum {ID = 3};

virtual unsigned long GetID() const throw() {return ID;}

};//Triangle

I will try to implement now our uniform grid class based on this simple base classes trying to refine the design until a good abstraction is achieved.

Our purpose is to implement a generic algorithm that had some sort of this expected behavior:

class AUniformGrid

{

public:

AUniformGrid(const Point& ptMin, const Point& ptMax, bool bUseZ = true, long nBuckets = 100000) throw();

//This event is the only think that must to be specialised in derived classes

//Is thrown by DrawA*() methods each time when a new bucket is hit !

virtual void OnBucketHit(unsigned long nIndex, const AObject*) throw() = 0;

//Some specialisations for simple geometric entities this will physically draw the object in our grid

//Each time when a new bucket is hit will send OnBucketHit() event

//Implementation is not listed here!

virtual void Draw(const Point*){}

virtual void Draw(const Line*){}

virtual void Draw(const Triangle*){}

};// AUniformGrid

For use this object in an automatic way for composite Objects a public derivation from AConstantAlgorithm is necessary. An immediate design can be:

class AUniformGrid: public AConstantAlgorithm

{

public:

AUniformGrid(const Point& ptMin, const Point& ptMax, bool bUseZ = true, long nBuckets = 100000) throw();

//Base class requirements

virtual bool operator()(const AObject*) throw(); //our dispatcher

//This event is the only think that must to be specialised in derived classes

//Is thrown by DrawA*() methods each time when a new bucket is hit !

virtual void OnBucketHit(unsigned long nIndex, const AObject*) throw() = 0;

//Some specialisations for simple geometric entities.Tthis will physically draw the object in our grid

//Each time when a new bucket is hit will send OnBucketHit() event

//Implementation is not listed here!

virtual void Draw (const Point*){}

virtual void Draw (const Line*){}

virtual void Draw (const Triangle*){}

}; // AUniformGrid

//And the implementation of the dispatcher is:

bool AUniformGrid::operator()(const AObject* pao)

{

m_paoCurrent = pao;

switch(pao->GetID())

{

case Point::ID:

Draw(static_cast<const Point*>(pao));

return true; //I can handle this !

case Line::ID:

Draw(static_cast<const Line*>(pao));

return true; //I can handle this !

case Triangle::ID:

Draw(static_cast<const Triangle*>(pao));

return true; //I can handle this !

default:

return false; //I think this object is unknown or a composite container !

}//switch

}//operator()

You can observe immediate: this dispatcher is a nice piece of potential reusable software that don’t have nothing in common with our main problem called “uniform grids” but is a healthy specialised dispatcher for simple geometric entities. Why we don’t try to reuse it in all algorithms that had an express geometric behavior?

Now another question is how to reuse this dispatcher? First we must kill all the stuff related with uniform grids. That means to explicit named methods like Draw(*) must to be renamed to cope with requirements of a generic dispatcher. I will call this, of course, operator() because I don’t want to give them any name that can conflict with my clients various needs. Good, and now our class becomes two classes a dispatcher and his specialisation, our abstract AUniformGrid:

class ASimpleGeometricDispatcher: public AConstantAlgorithm

{

public:

//Base class requirements

virtual bool operator()(const AObject*) throw(); //our dispatcher

protected:

//Some specialisations for simple geometric entities

virtual void operator() (const Point*) = 0;

virtual void operator() (const Line*) = 0;

virtual void operator() (const Triangle*) =0;

}; // ASimpleGeometricDispatcher

The implementation of the dispatcher is the same only now are called specialised abstract versions of operator().

Obvious now our simple problem with one virtual operator() becomes three times more complicate because require specialisations for Point, Line and Triangles but at least don’t require dispatching that was our main goal !

Good. Let’s try to come back to our AUniformGrid and see how will look after a specialsation from ASimpleGeometricDispatcher:

class AUniformGrid: public ASimpleGeometricDispatcher

{

public:

AUniformGrid(const Point& ptMin, const Point& ptMax, bool bUseZ = true, long nBuckets = 100000) throw();

virtual void OnBucketHit(unsigned long nIndex, const AObject*) throw() = 0;

long GetBucketsNo() const throw() {return m_nBuckets;}

protected:

//Some specialisations for simple geometric entities this will physically draw the object in our grid

//Each time when a new bucket is hit will send OnBucketHit() event

//Implementation is not listed here!

virtual void operator() (const Point*){/*…*/}

virtual void operator() (const Line*){/*…*/}

virtual void operator() (const Triangle*){/*…*/}

private:

long m_nBuckets;

}; //AUniformGrid

Now our abstract uniform grid is just implemented. This will only create a UG that is able to draw any kind of geometric entities but is not specialised in any way. Our duty is to public derive from AUniformGrid and to specialise OnBucketHit() event.

An in fashion example this days is to cache a big composite geometric entity on a set of streams using UG behaviour.

class UGCache: public AUniformGrid

{

public:

UGCache(const Point& ptMin, const Point& ptMax, long nBuckets = 10) throw();

virtual UGCache::~UGCache();

virtual void OnBucketHit(unsigned long nIndex, const AObject*) throw();

protected:

std::vector<std::ofstream*> m_poss;

};//UGCache

UGCache::UGCache(const Point& ptMin, const Point& ptMax, long nBuckets):

AUniformGrid(ptMin, ptMax, false, nBuckets),

m_poss()

{

for(long i = 0; i < GetBucketsNo(); i++)

{

std::strstream str;

str << "c:\\tmp\\Cache " << i << ".$$$" << '\0';

std::ofstream* pos = new std::ofstream(str.str(), std::ios::binary | std::ios::out);

m_poss.push_back(pos);

}//for

}//UGCache

UGCache::~UGCache()

{

for(long i = 0; i < GetBucketsNo(); i++)

delete m_poss[i];

}//UGCache

//How to add a candidate to a bucket

void UGCache::OnBucketHit(unsigned long nIndex, const AObject* ao)

{

*m_poss[nIndex] << ao;

}// OnBucketHit

void main()

{

//A cache based on UG

UGCache ugc(Point(0.0), Point(100.0), 20);

//Some geometric entities

Point pt;

Line ln;

SolidModel sm;

PolyLine pl;

//And the very difficult to understand usage is:

ugc(pt), ugc(ln), ugc(sm), ugc(pl);

}//main

Conclusion

Along this paper was tried a possible generalisation for an noninvasive uniform grids design that use fast compile time switch dispatcher with a minimum requirements for main classes to provide an ID.

Other ways of solving dispatching can be found on item 31 in “More effective C++”. Personally I consider this switch based dispatcher the faster noninvasive one with a minimum requirements for managed classes a virtual method. Dispatching is not the purpose of this paper any kind of dispatcher technology can be applied without big changes in design.

